SEMINÁRIOS

PESC

O Problema do Milênio sobre Intratabilidade Computacional

Celina Miraglia Herrera de Figueiredo

COPPE

UFRJ

Mathematician wins Turing award for harnessing randomness

Wigderson started exploring the relationship between randomness and computers in the 1980s, before the internet existed, attracted to ideas he worked on by intellectual curiosity, rather than how they might be used

One of the unexpected ways in which his ideas are now widely used was on zero-knowledge proofs, which detail ways of verifying information without revealing the information itself

read Quanta Magazine watch Zero Knowledge Proof

Abel prize celebrates union of Mathematics and Computer Science

Two pioneers of the theory of computation have won one of the most prestigious honours in mathematics

Since the advent of computers in the twentieth century, the emphasis in research has changed from 'can an algorithm solve this problem?' to 'can an algorithm, at least in principle, solve this problem on an actual computer and in a reasonable time?'

read Abel interview 2021

Today is more difficult to distinguish pure and applied math

Maths \rightarrow Comput
László Lovász (1948, Budapest) grew up a talented child competing at solving hard problems Early inspiration from Paul Erdos, prolific mathematician of the modern era, who focused on the mathematics of discrete objects Interested in basic research as well as in its applications, worked as a full-time researcher at Microsoft for seven years in between academic positions

Comput \rightarrow Maths

Avi Wigderson (1956, Haifa) studied in Israel and the United States and held various academic positions before moving to the IAS in 1999, where he is ever since. Contributed to practically all areas of computer science, in which he attacked any problem with whatever mathematical tools he could find, even from distant fields of study

Abel prize - The Nobel for Mathematics

Laureates since 2003 in DM and TCS
2012 Endre Szemerédi - fundamental contributions to discrete math and theoretical computer science 2021 László Lovász and Avi Wigderson foundational contributions to theoretical computer science and discrete math, and their role in shaping them into central fields of modern mathematics

John Nash awarded Nobel (1994, Game Theory) + Abel (2015, Partial Differential Equations)

The Fields Medal is awarded since 1936 up to four mathematicians under 40 years at the International Mathematical Union Congress, every four years

UNIVERSALITY AND TOLERANCE
(Extended Abstract)

Noga Alon* Michael Capalbo ${ }^{\dagger}$ Yoshiharu Kohayakawa ${ }^{\ddagger}$ Vojtěch Rödl ${ }^{\S}$ Andrzej Ruciński Endre Szemerédill

Turing award - The Nobel for Computer Science

Laureates since 1966 in theoretical computer science

1974 Donald Knuth - contributions to the analysis of algorithms

1982 Stephen Cook - understanding the complexity of computation

1985 Richard M. Karp - contributions to the theory of algorithms, polynomial-time computability and NP-completeness

1986 Robert Tarjan - design and analysis of algorithms and data structures

A STRUCTURED PROGRAM TO

 GENERATE ALL TOPOLOGICAL SORTING ARRANGEMENTSDonald E. KNUTH*
Computer Science Dept., Si_nford University, Stanford, Calif., 94305, USA and
Jayme L. SZWARCFITER **
Universidade Federal do Rio de Janeiro, Argentina
Received 26 October 1973
Revised version received 5 February 1974
data structures programming languages combinatorial prohlems

The Millennium Prize Problems

David Hilbert:
23 problems
Paris in 1900

Clay Mathematics Institute:
7 prize problems
Paris in 2000

P versus NP problem has no associated mathematician

P versus NP - a gift to Mathematics from Computer Science

The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (in polynomial time), an algorithm can also find that solution quickly

Avi Wigderson expects P not equal NP
Donald Knuth expects P equal NP

Clique graph gadget: a catwalk for variable u_{i}

RS-family of G_{I} must contain either the false triangles in (a) or the true triangles in (b). All bold triangles must belong to the RS-family.
"The complexity of clique graph recognition"
Theoret. Comput. Sci. 2009 (with Liliana Alcon, Luerbio Faria, Marisa Gutierrez)

watch Donald Knuth: $\mathrm{P}=\mathrm{NP}$

Hilbert, Godel, Turing, von Neumann and Wigderson

Hilbert's two-part dream:
Everything that is true in Mathematics is provable Everything that is provable can be automatically computed

1931 Godel proved that no matter how hard you try, your set of axioms will always be incomplete, they will not be sufficient to prove all true facts

1936 Turing introduced his Turing machine and proved the unsolvability of the halting problem

1940s-50s Turing and von Neumann played a major role in early development of computers

Princeton, 20 March 1956
Dear Mr. von Neumann:
With the greatest sorrow I have learned of your illness. The news came to me as quite unexpected. Morgen-
stern already last summer told me of a bout of weakness you once had, but at that time he thought that this stern already last summer told me of a bout of weakness you once had, but at that time he thought that this was not of any greater significance. As 1 hear, in the last months you have undergone a radical treatment
and I am happy that this treatment was successful as desired, and that you are now doing beeter. I hope and wish for you that your condition will soon improve even more and that the newest medical discoveries, if possible, will lead to a complete recovery.
Since you now, as I hear, are feeling stronger, I would like to allow myself to write you about a mathe matical problem, of which your opinion would very much interest me: One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and evrry natural number n, allows
one to decide if there is a proof of F of length n (length $=$ number of symbols). Let $\Psi(F, n)$ be the number of one to decide if there is a proof of F of length n (length $=$ number of symbols). Let $\Psi(F, n)$ be the number of
steps the machine requires for this and let $\varphi(n)=$ maxe $\mathbb{W}(F, n)$. The question is how fast $p(n)$ grows for an steps the machine requires for this and let $\varphi(n)=\max _{F} \Psi(F, n)$. The question is how fast $\varphi(n)$ grows for an
optimal machine. One can show that $\varphi(n) \geq k-n$. If there really were a machine with $\varphi(n) \sim k \cdot n($ or even $\left.\sim k-n^{2}\right)$, this would have consequences of the greatest importance. Namely, it would obvionsly mean that
in spite of the undecidability of the Ent scheidunsperblem, the mental work of
 Yes-ar--No questions conld be completely replaced by a machine. After all, one would simply have to choose
the natural number n so large that when the machine does not deliver a result, it makes no sense to think the natural number n so large that when the machine does not deliver a result, it makes no sense to think
more about the problem. Now it seems to me, hovever, to be completely within the realm of possibility
that that $\psi(n)$ grows that slowly. Since it sems that $\varphi(n) \geq k \cdot n$ is the only estimation which one can ontian
by a generaization of the proof of the undecidability of the Entscheidungsproblem and after all $\varphi(n) \sim k \cdot n$ by a generalization of the proof of the undecidatility of the Entscheidungsproblem and after all $\varphi(n) \sim k \cdot n$
(or $\left.\sim k-n^{2}\right)$ only means that the number of steps as opposed sto tial and error can be reduced from N to
$\log N\left(\right.$ or $\left.(\log N)^{2}\right)$. However, such strong reductions appear in other finite problems, for example in the $\left.\operatorname{lor} \sim k \cdot n^{2}\right)^{\text {only }}$ means that the number of steps as opposed to trial and error can be reduced from N to
$\left.\log N(\text { or (log } N)^{2}\right)$. However, such strong reductions appear in other finite problems, for example in the
computation of the quadratic residne symbol using repeated application of the law of reciprocity It would computation of the quadratic residue symbol using repeated application of the law of reciprocity. It would
be interesting to know, for instance, the situation concerning the determination of primality of a number and be interesting to know, for instance, the situation concerming the determination of primality of a number and
how strongly in general the number of steps in finite combinatorial problems can he meduced with respect to simple exhaustive search.
 problems of the form $(\exists y) \varphi(y, x)$, where φ is recursive, has been solved in the positive sense by a very
young man by the name of Richard Friedberg. The solution is very elegant. Unfortunately. Friedherg does not intend to study mathematics, but rather medicine (apparently under the influence of his father). By the way, what do you think of the attempts to build the foundations of analysis on ramified type theory,
which have recently gained momentum? You are probably aware that Paul Lorenzen has pushed ahead with which have recently gained momentum? You are probably aware that Paul Lorenzen has pushed ahead with non-fliminable impredicative proof methods do appear.
I would be very happy to hear something from you personally. Please let me know if there is something that I can do for you. With my best grectings and wishes, as well to your wife.

Sincerely yours,
Kurt Gödel
P.S. I heartily congratulate you on the award that the American government has given to you

Cook's SAT followed by Karp's 21 problems

1971 Stephen Cook SAT NP-complete and polynomial-time reduction

1972 Richard Karp - Reducibility among combinatorial problems
equivalent classic unsolved problems
either each has polynomial algorithm or none does

FIGURE 1 - Complete Problems

Knuth's terminology

> Problem at least as difficult to solve in polynomial time as those of Cook-Karp class NP

Knuth wrote to 30 people:
Herculean, Formidable or Arduous?

The winning write-in vote is NP-hard put forward by several people at Bell Labs

before looking at the ballots.] It's preposterous to do such a thing in a democracy, but I did it. The resulting weighted average scores were

Herculean
.369
.373
arduous
. .353
In other words, very low. [I'll bet that the term 'polynomial complete' would have fared even worse in the early days; but I'm just trying to heal my wounded feelings when I say this.]

Fortunately, there was a ray of hope remaining, namely the space for write-in votes. I received very many ingenious suggestions; indeed, the write-ins proved conclusively that creative research workers are as full of ideas for new terminology as they are empty of enthusiasm for adopting it.

The write-in votes were so interesting, I'd like to discuss them here at some length. First, there were several other English words suggested:

impractical	intractable
bad	costly
heavy	obdurate
tricky	obstinate
intricate	exorbitant

intricate
prodigious
exorbitant
interminable

Also, Ken Steiglitz suggested "hard-boiled", in honor of Cook who originated this subject. Al Meyer tried "hard-ass" (hard as satisfiability). [You can see what I mean about creative researchers.]

A terminology proposal, D.E. Knuth, SIGACT News, 1974

Knuth - Garey - Johnson

The Guide is 40 years old

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness
"Despite that 23 years have passed since its publication, I consider Garey and Johnson the single most important book on my office bookshelf. Every computer scientist should have this book on their shelves as well. NP-completeness is the single most important concept to come out of theoretical computer science and no book covers it as well as Garey and Johnson."

Lance Fortnow, "Great Books: Computers and Intractability: A Guide to the Theory of NP-Completeness"

Advances in algorithms, machine learning, and hardware can help tackle many NP-hard problems once thought impossible.

BY LANCE FORTNOW

Discrete Mathematics

Combinatorics is a branch of mathematics, plays crucial role in computer science, since digital computers manipulate discrete, finite objects

Combinatorial methods give analytical tools for computer algorithms worst-case and expected performance

L. Loross J. Pdikion X. Veszergonsi

DSGRETE MATHEMATICS
Bementrory and Bepond

Q Springer

Concrete Mathematics =
CONtinuous and disCRETE mathematics
a complement to abstract mathematics

Theoretical Computer Science

Studies the power and limitations of computing TCS two complementary sub-disciplines:
algorithm design develops efficient methods for computational problems
computational complexity shows limitations on efficiency of algorithms
discrete mathematics and TCS are allied fields:
 graphs, strings, permutations are central to TCS

Computing technology is made possible by algorithms, understanding the principles of powerful and efficient algorithms deepens our understanding of computer science, and also of the laws of nature

Graph Theory

Teoria Computacional de Grafos Jayme Luiz Szwarcfiter, 2018

Graph theory is the mathematics of connectivity: covering, matching, packing, cuts, routing, independence

Graphs and other combinatorial objects lead to algorithms for graph-theoretic problems, with application in computing

Randomized Algorithms

Computers are deterministic: set of instructions of algorithm applied to input determines its computation and output

The world we live in is full of random events that lack predictability, or a well-defined pattern

Computer scientists allow algorithms to Introdução aos Algoritmos Randomizados

Curso introdutório no 26 O Colóquio Brasileiro de Matemática
30/7 a 3/8, 14:00-15:00 (monitoria 13:00-13:30), sala 232

Professores
Celina Miraglia Herrera de Figueiredo (COPPE/UFRJ)
Guilherme Dias da Fonseca (CS/UMD)
Manoel José Machado Soares Lemos (DMAT/UFPE)
Vinícius Gusmão Pereira de Sá (COPPE/UFRJ)
Monitor
Raphael Carlos Santos Machado (COPPE/UFRJ)
Materiais
prefácio - texto completo - soluções dos exercícios • proximos.py slides: apresentação • aulas 1 e $2 \cdot$ aula $3 \cdot$ aulas 4 e 5 make random choices to improve their efficiency

A randomized algorithm flips coins to compute a solution that is correct with high probability

Sorting and Primality

Las Vegas Quicksort:
correct answer
expected time

Monte Carlo Primality Test:
expected answer
deterministic time

Pseudoprime (n)
if Modular-Exponentiation $(2, n-1, n) \not \equiv 1(\bmod n)$ return COMPOSITE // definitely else return PRIME // we hope!

Trading hardness for randomness

Avi revolutionized our understanding of the role of randomness in computation
every randomized polynomial time algorithm can be efficiently derandomized, made fully deterministic
trade-off between hardness versus randomness:
if there exists a hard enough problem, then randomness can be simulated by efficient deterministic algorithms; conversely, efficient deterministic algorithms even for specific problems with known randomized algorithms would imply that there must exist such a hard problem
fournal of COMputer and system sciences 49, 149-167 (1994)

Hardness vs Randomness*

Noam Nisan ${ }^{\dagger}$ and Avi Wigderson ${ }^{\ddagger}$
Institute of Computer Science,
Hebrew University of Jerusalem, Israel
Received February 27, 1989; revised September 26, 1993

We present a simple new construction of a pseudorandom bit generator. It stretches a short string of truly random bits into a long string that looks random to any algorithm from a complexity class C (e.g., $P, N C, P S P A C E, \ldots$) using an arbitrary function that is hard for C. This construction reveals an equivalence between the problem of proving lower bounds and the problem of generating good pseudorandom sequences. Our construction has many consequences. The most direct one is that efficient deterministic simulation of randomized algorithms is possible under much weaker assumptions than previously known. The efficiency of the simulations depends on the strength of the assumptions, and may achieve $P=B P P$. We believe that our results are very strong evidence that the gap between randomized and deterministic complexity is not large. Using the known lower bounds for constant depth circuits, our construction yields an unconditionally proven pseudorandom generator for constant depth circuits. As an application of this generator we characterize the power of NP with a random oracle. © 1994 Acadcmic Press, Inc.

Avi Wigderson, 2023 Turing Award, Q\&A with director of the IAS

I am both a mathematician and a computer scientist I study the mathematical foundations of computing I prove theorems to understand computation, computational processes also in nature

Could a Nobel go to innovations of computing applied to a natural science?

watch

My three decades in this field have been a continuous joyride, with fun problems, brilliant researchers, and many students, postdocs, and collaborators who have become close friends

I'm lucky to be part of a dynamic community

O Problema do Milênio sobre

Intratabilidade Computacional

Celina Miraglia Herrera de Figueiredo

COPPE
 UFRJ

